首页 | 本学科首页   官方微博 | 高级检索  
     


Principle of structural equation modeling for exploring functional interactivity within a putative network of interconnected brain areas
Authors:de Marco Giovanni  Vrignaud Pierre  Destrieux Christophe  de Marco Damien  Testelin Sylvie  Devauchelle Bernard  Berquin Patrick
Affiliation:Laboratoire de traitement d'images médicales, Service de chirurgie maxillofaciale et stomatologie, Département de traitement de l'image médicale, CNRS FRE 2726, UPJV, CHU-Nord, 80054 Amiens, France. demarco.giovanni@chu-amiens.fr
Abstract:Functional neuroimaging first allowed researchers to describe the functional segregation of regionally activated areas during a variety of experimental tasks. More recently, functional integration studies have described how these functionally specialized areas, interact within a highly distributed neural network. When applied to the field of neurosciences, structural equation modeling (SEM) uses theoretical and/or empirical hypotheses to estimate the effects of an experimental task within a putative network. SEM represents a linear technique for multivariate analysis of neuroimaging data and has been developed to simultaneously examine ratios of multiple causality in an experimental design; the method attempts to explain a covariance structure within an anatomical constrained model. This method, when combined with the concept of effective connectivity, can provide information on the strength and direction of the functional interactions that take place between identified brain regions of a putative network.
Keywords:Model   Network   Integration   Effective connectivity   SEM
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号