首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Research on viscosity of metal at high pressure
Authors:Y Li  F Liu  X Ma  M Zhang
Institution:1.Laboratory of High Pressure Physics,Southwest Jiaotong University,Chengdu,People’s Republic of China
Abstract:A new experimental technique, the flyer-impact method, is proposed in this article to investigate the viscosity coefficient of shocked metals. In this technique, a shock wave with a sinusoidal perturbation on the front is induced by the sinusoidal profile of the impact surface of the sample by use of a two-stage light-gas gun, and the oscillatory damping process of the perturbation amplitude is monitored by electric pins. The damping processes of aluminum at 78 and 101 GPa and iron at 159 and 103 GPa are obtained by this technique, which supplement the existing data by measuring the viscosity coefficient via a dynamic high-pressure method. Applying the formula of Miller and Ahrens to fit the experimental data, the shear viscosity coefficients of aluminum at 78 and 101 GPa are \(1350\,\pm \,500\) and \(1200\,\pm \,500~\hbox {Pa}\,\hbox {s}\), respectively, and those of iron at 159 and 103 GPa are \(1150\,\pm \,1000\) and \(4800\,\pm \,1000~\hbox {Pa}\,\hbox {s}\), respectively. The values measured by the flyer-impact method, approximately \(10^{3}~\hbox {Pa}\, \hbox {s}\), are consistent with those measured by Sakharov’s method, while still greatly differing from those measured by static high-pressure methods. In dynamic high-pressure experiments, the shear viscosity is related to dislocation motion in the solid material, while that in static high-pressure experiments is related to the diffusion motion of atoms or molecules in liquids. Therefore, there are different physical meanings of shear viscosity in dynamic and static high-pressure experiments, and there is no comparability among these results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号