首页 | 本学科首页   官方微博 | 高级检索  
     


First principles study of the reaction of formic and acetic acids with hydroxyl radicals
Authors:Sun Wenjie  Saeys Mark
Affiliation:Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117576.
Abstract:The oxidation of formic and acetic acids with hydroxyl radicals was studied as a model for the oxidation of larger carboxylic acids using first principles calculations. For formic acid, the CBS-QB3 activation barriers of 14.1 and 12.4 kJ/mol for the acid and for the formyl channel, respectively, are within 3 kJ/mol of benchmark W1U values. Tunneling significantly enhances the rate coefficient for the acid channel and is responsible for the dominance of the acid channel at 298 K. At 298 K, tunneling correction factors of 339 and 2.0 were calculated for the acid and the formyl channel using the small-curvature tunneling method and the CBS-QB3 potential energy surface. The Wigner, Eckart, and zero-curvature tunneling methods severely underestimate the importance of tunneling for the acid channel. The resulting reaction rate coefficient of 0.98 x 10(5) m(3)/(mol x s) at 298 K is within a factor 2-3 of experimental values. For acetic acid, an activation barrier of 11.0 kJ/mol and a tunneling correction factor of 199 were calculated for the acid channel. Two mechanisms compete for hydrogen abstraction at the methyl group, with activation barriers of 11.9 and 12.5 kJ/mol and tunneling correction factors of 9.1 and 4.1 at 298 K. The resulting rate coefficient of 1.2 x 10(5) m(3)/(mol x s) at 298 K and branching ratio of 94% compare well with experimental data.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号