首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acoustic pressure losses in woven screen regenerators
Institution:School of Engineering and Materials Science, Queen Mary, University of London, Mile End Rd., London E1 4NS, UK
Abstract:In thermoacoustic travelling-wave engines and other Stirling cycle devices, good performance depends on the material of a regenerator being in intimate contact with the gas inside it, so that each particle of gas oscillates in temperature following the adjacent material as it is acoustically displaced. This requires that the passages are small enough for temperature waves to penetrate across the gas path with the frequencies of interest. One type of ‘regenerator’ that is commonly used for this purpose is composed of multiple layers of woven stainless steel mesh, laid on top of one another in random registration. Associated with the thermal penetration is a viscous loss of pressure and this must be quantified if efficient engines are to be designed.In the literature, reliance has been placed on the correlation of steady-flow loss data for these meshes, but for the coarser ones operating at frequencies greater than 28 Hz, the assumption of quasi steady-flow is dubious and direct acoustic measurements must be made. This paper reports acoustic pressure loss data for meshes with 34 and 75 wires per inch taken in two configurations of impedance tube, and finds that the dependence on velocity is the same as in steady-flow, but that there is indeed some enhancement of loss for frequencies above 40 Hz. (Separation of the mesh layers is probably responsible for the anomalously low loss coefficients that were recorded in one set of data.) It is shown that the acoustic pressure losses can be correlated in terms that give the acoustic impedance more directly than the friction factor correlations.
Keywords:Thermoacoustic regenerators  Acoustic pressure losses  Woven screens  Stirling engines
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号