首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of oxidized glycerophosphocholine lipids using electrospray ionization mass spectrometry and microderivatization techniques
Authors:Harrison K A  Davies S S  Marathe G K  McIntyre T  Prescott S  Reddy K M  Falck J R  Murphy R C
Institution:Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, Colorado 80206, USA.
Abstract:Oxidized low-density lipoprotein (LDL) is thought to play an important role in atherogenesis and cardiovascular disease in humans. Oxidized LDL is a complex mixture of many oxidized species, including numerous oxidized glycerophospholipids. Electrospray ionization and tandem mass spectrometry as well as microchemical derivatization of high-performance liquid chromatographically purified fractions derived from oxidized LDL were investigated as means to determine the structure of individual components present in oxidized LDL. One major oxidized phosphocholine lipid had an M + H](+) ion at m/z 650. Derivatization to the trimethylsilyl ether and methoxime caused shifts in mass which, along with negative ion collision-induced dissociation mass spectra, were consistent with the presence of three species, 1-palmitoyl-2-(9-oxononanoyl)glycerophosphocholine and two isomeric 1-octadecanoyl-2-(hydroxyheptenoyl)glycerophosphocholines. These species were chemically synthesized. Trimethylsilylation of free hydroxyl groups increased the mass of the phospholipid acyl chains containing hydroxyl groups by 72 u. Conversion of carbonyl groups to the methoxylamine derivative increased the mass by 29 u. Ozonolysis of those products which contained double bonds proved to be a facile technique to determine the position and number of double bonds present. The use of these techniques was illustrated in the structural characterization of one major component (m/z 650, positive ions) in oxidized LDL as 1-octadecanoyl-2-(7-hydroxyhepta-5-enoyl)glycerophosphocholi ne. A possible mechanism for the formation of this unique chain-shortened glycerophospholipid is proposed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号