首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The control of the nonlinear optical response of semiconductor quantum dots
Authors:R Safari  S Shojaei
Institution:1. Physics Department Ahar Branch, Islamic Azad University, Ahar, Iran;2. Photonics Group, Research Institute for Applied Physics & Astronomy, University of Tabriz, Tabriz, Iran
Abstract:In the present work, we investigate the nonlinear optical properties emerged from excitonic features in an experimentally realized spherical parabolic semiconductor quantum dot (QD). The lowest exciton states together with relevant wave functions are calculated through the expansion method with direct matrix diagonalization method within the effective mass approximation. The effect of the size of QD and confinement potential in exciton state is studied in details. Results show that with increasing the size of the QD the energy of exciton decreases because of decreasing of the effect of coulomb potential. Using the compact density matrix formalism second order nonlinear optical rectification (χ(2)χ(2)) are obtained. By means of the applied electric and magnetic field we manipulate the exciton states and control the nonlinear optical response in a typical GaAs, InAs, CdSe QDs. Our model system presents a way to control the performance of excitonic optoelectronic devices based on semiconductor nanostructures.
Keywords:Quantum dot  Second order optical rectification  Exciton
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号