首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acceleration target detection based on LFM radar
Authors:Cun Suo Pang  Hui Ling Hou  Yan Han
Institution:1. National Key Laboratory for Electronic Measurement, North University of China, Taiyuan, Shanxi, China;2. School of Information Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract:In radar systems, the echo signal caused by an accelerated target can be similarly considered as linear frequency modulation (LFM) signal. In high signal-to-noise ratio (SNR), discrete polynomial-phase transform (DPT) algorithm can be used to detect the echo signal, as it has low computation complexity and high real-time performance. However, in low SNR, the DPT algorithm has a large mean square error of the rate of frequency modulation and a low detection probability. In order to detect LFM signal in low SNR, this paper proposes a detection method, segment discrete polynomial-phase transform (SDPT), which means, at first, dividing the whole echo pulses into several segments with same duration in time domain, and then, using coherent accumulation method of DFT to segments, at last, processing this signal with DPT in intra-segment. In the case of a large number of segments, the SDPT can improve the output SNR. In addition, in a certain SNR, to the target signal with big sampling interval, large acceleration and less segments, this paper proposes an algorithm to detect the LFM signal generated from the combination of an improved DPT (IDPT) and fractional Fourier transform (FRFT). The output SNR of this algorithm is connected with the length of time delay. In the simulation, when the length of the time delay is 0.2 N, the output SNR is 2.5 dB more than that which results from directly using DPT. Finally, the detection performance and algorithm complexity of the proposed algorithm were analyzed, and the simulated and measured data verify the effectiveness of the algorithm.
Keywords:LFM radar system  Coherent integration  SDPT  Instantaneous correlation  FRFT
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号