首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism Insights into Second-Order Nonlinear Optical Responses of Anionic Metal Clusters
Authors:Qiaohong Li  Kechen Wu  Rongjian Sa  Yongqin Wei
Affiliation:(1) State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People’s Republic of China;
Abstract:We present the first-principle calculations on the electronic excitations and second-order properties in solution phase of two typical inorganic trinuclear anionic clusters, [MoCu2S4(SPh)2]2− and [Mo2CuS4]1−(edt)2(PPh3) (edt=1,2-ethanedithiolato) in the framework of density functional theory (DFT). The computed excitation energies are in good agreement with the outcome of the measurements. The predicted values of the molecular quadratic hyperpolarizabilities are of the comparable order of those of the typical organometallic chromophores. We demonstrate the significant contributions to the second-order responses from the charge transfers between the metal centers (MMCT) which are ascribed to the direct metal–metal bonding interactions in these two charged clusters. This meaningful ligand-independent mechanism for the second-order response largely relates to metal–metal bonding strength, and the understanding will benefit to the future design of the new-generation molecular based nonlinear optical materials and optoelectronic devices by means of the conscious tuning of metal–metal interactions and metal-core structures of inorganic polynuclear clusters.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号