首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trajectory studies of S(N)2 nucleophilic substitution. 8. Central barrier dynamics for gas phase Cl(-) + CH(3)Cl
Authors:Sun L  Hase W L  Song K
Institution:Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, USA.
Abstract:Quasiclassical direct dynamics trajectories, calculated at the MP2/6-31G level of theory, are used to study the central barrier dynamics for the C1(-) + CH(3)Cl S(N)2 reaction. Extensive recrossings of the central barrier are observed in the trajectories. The dynamics of the Cl(-)-CH(3)Cl complex is non-RRKM and transition state theory (TST) is predicted to be an inaccurate model for calculating the Cl(-) + CH(3)Cl S(N)2 rate constant. Direct dynamics trajectories also show that Cl(-) + CH(3)Cl trajectories, which collide backside along the S(N)2 reaction path, do not form the Cl(-)-CH(3)Cl complex. This arises from weak coupling between the Cl(-)-CH(3)Cl intermolecular and CH(3)Cl intramolecular modes. The trajectory results are very similar to those of a previous trajectory study, based on a HF/6-31G* analytic potential energy function, which gives a less accurate representation of the central barrier region of the Cl(-) + CH(3)Cl reaction than does the MP2/6-31G* level of theory used here. Experiments are suggested for investigating the non-RRKM and non-TST dynamics predicted by the trajectories.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号