首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional numerical simulation of vortex-induced vibration of an elastically mounted rigid circular cylinder in steady current
Affiliation:1. School of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia;2. School of Civil, Environmental and Mining Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;3. Center for Deepwater Engineering, Dalian University of Technology, Dalian 116024, China;1. Institute for Turbulence-Noise-Vibration Interactions and Control, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China;2. Key Lab of Advanced Manufacturing Technology, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China;3. School of Civil and Resource Engineering, The University of Western Australia, Australia;1. Department of Mechanical Engineering, Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain;2. Naval Architecture Department, Technical University of Madrid (UPM), 28040 Madrid, Spain;1. MARINTEK, Trondheim, Norway;2. NTNU, Trondheim, Norway;3. Shell International Exploration and Production Inc., Houston, TX, USA;4. Statoil, Trondheim, Norway;1. Department of Naval Architecture and Ocean Engineering, School of Civil Engineering and Transportation, South China University of Technology, Guangdong, 510641, China;2. Guangxi Ship Digital Design and Advanced Manufacturing Research Center of Engineering Technology, Qinzhou University, Guangxi, 535000, China;3. Qinzhou Key Laboratory of Marine Advanced Design and Manufacturing, Qinzhou University, Qinzhou, 535011, China;4. Guangdong Sinoway Composites Co., ltd, Guangdong, 510110, China;5. College of Science and Engineering, Flinders University, South Australia, 5042, Australia
Abstract:Vortex-induced vibration (VIV) of an elastically mounted rigid circular cylinder in steady current is investigated by solving the three-dimensional Navier–Stokes equations. The cylinder is allowed to vibrate only in the cross-flow direction. The aim of this study is to investigate the variation of the vortex shedding flow in the axial direction of the cylinder and to study the transition of the flow from two-dimensional (2D) to three-dimensional (3D) for VIV of a cylinder. Simulations are carried out for a constant mass ratio of 2, the Reynolds numbers ranging from 150 to 1000 and the reduced velocities ranging from 2 to 12. The three-dimensionality of the flow is found to be the strongest in the upper branch of the VIV response and weakest in the initial branch. The 2S and 2P vortex shedding modes are found to coexist along the cylinder span in the upper branch, leading to strong variations of the lift coefficient in the axial direction of the cylinder. The difference between the flow transition from 2D to 3D in the VIV lock-in regime and that in the wake of a stationary cylinder is identified. The transition mode B found in the wake of a stationary cylinder is also found in the wake of a vibrating cylinder. The critical Reynolds number for flow transition from 2D to 3D of a cylinder undergoing cross-flow VIV at a reduced velocity of 6 is found to be greater than that for a stationary cylinder. For a constant reduced velocity of 6, the wake flow changes from 2D to 3D as the Reynolds number is increased from 250 to 300. Some 2D numerical simulations are performed and it is found that the 2D Navier–Stokes (NS) equations are not able to predict the VIV in the turbulent flow regime, while the 2D Reynolds-averaged Navier–Stokes (RANS) equations improve the results.
Keywords:Vortex-induced vibration  Vortex shedding  Numerical method  Cylinder
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号