首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogel-Based Macroscopic Click Chemistry
Authors:Qingyun Li  Ziqing Hu  Prof Xiaofan Ji
Institution:Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Abstract:The click reaction has found good utility across various fields due to the characteristics of high efficiency, atom economy, simple and mild reaction conditions. Click chemistry is usually utilized for connecting components of microscopic level, while it is still unable for joining macroscopic building blocks. Materials consisting of macroscopic building blocks realize the flexible fabrication of three-dimensional structures at macroscopic level, exerting significance on parallel manufactures. In this work, we reported macroscopic click chemistry utilizing hydrogel as macroscopic building blocks. Hydrogels G1 and G2 were prepared by incorporating M1 (N,N′-dimethyl-1,2-ethanediamine) and P1 (alkyne functionalized polyethylene glycol) respectively, where polymer chains formed through diffusion-induced amino-yne click reaction entangled different hydrogel networks together. Additionally, chain-like aggregates and complicated 3D structures such as tetrahedron and quadrangular pyramid were constructed based on the adhesion of the hydrogel blocks. The approach enables us to find more possibilities in the delicate designation of 3D aggregations as well as large-scale manufacturing.
Keywords:Aggregation-Induced Emission  Click Chemistry  Hydrogel  Self-Healing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号