首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Broadband dielectric spectroscopic, calorimetric, and FTIR-ATR investigations of D-arabinose aqueous solutions
Authors:Singh Lokendra P  Cerveny Silvina  Alegría Angel  Colmenero Juan
Institution:Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastian, Spain. lokendrapratap_singh@ehu.es
Abstract:The dielectric relaxation behavior of D-arabinose aqueous solutions at different water concentrations is examined by broadband dielectric spectroscopy in the frequency range of 10(-2) -10(7) Hz and in the temperature range of 120-300 K. Differential scanning calorimetry is also performed to find the glass transition temperatures (T(g)). In addition, the same solutions are analyzed by Fourier transform infrared (FTIR) spectroscopy using the attenuated total reflectance (ATR) method at the same temperature interval and in the frequency range of 3800-2800 cm(-1). The temperature dependence of the relaxation times is examined for the different weight fractions (x(w)) of water along with the temperature dependence of dielectric strength. Two relaxation processes are observed in the aqueous solutions for all concentrations of water. The slower process, the so-called primary relaxation process (process-I), is responsible for the T(g) whereas the faster one (designated as process-II) is due to the reorientational motion of the water molecules. As for other hydrophilic water solutions, dielectric data for process-II indicate the existence of a critical water concentration above which water mobility is less restricted. Accordingly, FTIR-ATR measurements on aqueous solutions show an increment in the intensity (area) of the O-H stretching sub-band close to 3200 cm(-1) as the water concentration increases.
Keywords:aqueous solutions  calorimetry  carbohydrates  dielectric relaxation  IR spectroscopy
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号