首页 | 本学科首页   官方微博 | 高级检索  
     


Turbulent flow through bifurcated nozzles
Authors:Donald E. Hershey  Brian G. Thomas  Fady M. Najjar
Abstract:A finite-element model has been used to study steady-state turbulent flow through bifurcated submerged-entry nozzles with oversized ports typical of those used in the continuous casting of steel. Both 2D and 3D simulations have been performed with the commercial code FIDAP, using the standard K–? turbulence model. Predicted velocities from 3D simulations compare reasonably with experimental measurements using a hot-wire anemometer conducted in a physical water model, where severe turbulent fluctuations are present. Results show that a 2D simulation can also capture the main flow characteristics of the jet existing the nozzle and requires two orders of magnitude less computer time than the 3D simulation. A model combining the nozzle and mould was set up to study the effect of the outlet boundary conditions of the nozzle on the jet characteristics. This modelling technique will assist in the design of submerged-entry nozzles, especially as applied to enhance steel quality in the continuous casting process. Further, the model will provide appropriate inlet boundary conditions for a separate numerical model of the mould.
Keywords:Finite-element method  Incompressible flow  K-ϵ   turbulence model  Continuous casting  Bifurcated submerged entry nozzles  FIDAP  Steel
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号