首页 | 本学科首页   官方微博 | 高级检索  
     


Photopolymerization kinetics of oligo(ethylene oxide) and oligo(methylene) oxide dimethacrylates
Authors:Wayne D. Cook
Abstract:The influence of temperature on the photopolymerization kinetics of oligo(methylene) oxide and oligo(ethylene oxide) dimethacrylate series has been investigated by isothermal DSC. The DSC curves showed a rapid rise in rate due to the Trommsdorff effect, and then a slow decline. A shoulder, apparent on many of the DSC curves at low conversions, became more prominent when the cure temperature was lowered. The kinetics were relatively insensitive to the dimethacrylate structure in the early stages of the reaction, but became more dependent as the reaction proceeded. A previously derived mathematical model, which allows for the influence of diffusion on the rate constants, was used to predict the kinetics. The dependence of the maximum rate and conversion on the curing temperature were adequately described by the model. The experimentally observed shoulder on the rate curve was also predicated as was the evolution of the rate/time curves with curing temperature. Similar predictions were found when a nonsteady state version of the model was used. The radiation intensity exponent varied from 0.3 to 0.6 possibly due to chain-length effects and pseudo-first order termination, respectively. The final degree of conversion increased with curing temperature (Tcure) and was correlated with the flexibility of the dimethacrylate. These data were fitted to a theoretical expression relating the final conversion to the resin Tg and to the Tcure. © 1993 John Wiley & Sons, Inc.
Keywords:free radical polymerization  kinetics  dimethacrylate resins  diffusion  DSC  networks  temperature effects  homologous series
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号