首页 | 本学科首页   官方微博 | 高级检索  
     

可见光-近红外光谱的低品位斑岩型铜矿反演模型
摘    要:目前,国内外铜矿品位分析多以化学分析法为主,但由于化学分析法存在成本高、时间长和污染物残留等缺点,其相对配矿流程存在严重的滞后效应,致使尾矿铜含量过高,必然造成资源浪费。开展斑岩型铜矿可见光-近红外光谱特征与建模研究是解决这一问题的有效途径。以121个乌山斑岩型铜矿的化学分析与光谱测试数据为数据源,分析了斑岩型铜矿可见光-近红外光谱特征,以主成分分析法(PCA)、局部线性嵌入算法(LLE)两种降维算法对原始光谱数据进行了处理,所降维数分别为3维和5维,同时利用遗传算法(GA)对原始光谱数据进行了波段选择,共选取了467个最佳波段。然后以BP神经网络为建模方法,并分别以92个和29个斑岩型铜矿可见光-近红外光谱数据作为建模样本和测试样本,建立了斑岩型铜矿可见光-近红外光谱的定量反演模型。利用原始数据所建模型的品位反演平均绝对误差为0.104%,利用主成分分析法、局部线性嵌入算法、遗传算法处理后的数据所建模型品位反演平均绝对误差分别为0.110%, 0.093%和0.045%,由此可见,利用主成分分析法处理后的数据所建模型品位反演精度较差,利用局部线性嵌入算法处理后的数据所建模型品位反演精度略有提高,而利用遗传算法处理后的数据所建模型品位反演精度有明显提高。研究结果表明,基于低品位斑岩型铜矿可见光-近红外光谱数据反演模型的品位分析具有一定的可行性,为我国低品位斑岩型铜矿的品位快速检测提供了一种有效的手段。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号