首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dediazoniation of arenediazonium salts with trivalent-phosphorus compounds. Tool for examination of the reactivity of phosphorus-centered radicals
Authors:Shinro Yasui  Kosei Shioji  Atsuyoshi Ohno
Abstract:Trialkyl phosphites ( 1 ), dialkyl phenylphosphinites ( 2 ), and alkyl diphenylphosphonites ( 3 ) as well as 2-phenyl-1,3,2-dioxaphospholan ( 4b ) and 2-phenyl-1,3,2-dioxaphosphorinan ( 4b ) give rise to dediazoniation of arenediazonium salt ( 5 ) in an alcoholic solvent under an argon atmosphere at 20°C. The reaction proceeds via a radical-chain mechanism initiated by single-electron transfer (SET) from the trivalent-phosphorus compounds to 5 , as a result of which, an aryl radical Ar? and a cation radical 15 are generated from the former and the latter, respectively. The aryl radical Ar? participates in this chain process abstracting a hydrogen from the solvent alcohol, yielding the corresponding arene ArH. The cation radical 15 undergoes both an ionic reaction with the solvent alcohol and a radical coupling with Ar?, giving the phosphoranyl radical 16 and the phosphonium ion 17 , respectively, as intermediates. The phosphoranyl intermediate 16 decomposes through either the SET process to 5 or by β-scission, yielding the oxidation product (phosphate, phosphonate, or phosphinate from 1 , 2 , or 3 , respectively, or phosphonates from 4 ). The phosphonium intermediate 17 affords the arylated product (phosphonate, phosphinate, or phosphine oxide from 1 , 2 , 3 , respectively, or the phosphinate from 4 ). Among the trivalent-phosphorus compounds tested, 1 gives the arylated product in the highest yield. This observation, together with the literature data of ESR for structurally related phosphoranyl radicals, indicates that the radical coupling of 15 with Ar? is facilitated by the high spin density on its central phosphorus atom.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号