首页 | 本学科首页   官方微博 | 高级检索  
     


LES/PDF for premixed combustion in the DNS limit
Authors:Ranjith R. Tirunagari
Affiliation:Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, USA
Abstract:We investigated the behaviour of the composition probability density function (PDF) model equations used in a large-eddy simulation (LES) of turbulent combustion in the direct numerical simulation (DNS) limit; that is, in the limit of the LES resolution length scale Δ (and the numerical mesh spacing h) being small compared to the smallest flow length scale, so that the resolution is sufficient to perform a DNS. The correct behaviour of a PDF model in the DNS limit is that the resolved composition fields satisfy the DNS equations, and there are no residual fluctuations (i.e. the PDF is everywhere a delta function). In the DNS limit, the treatment of molecular diffusion in the PDF equations is crucial, and both the ‘random-walk’ and ‘mean-drift’ models for molecular diffusion are investigated. Two test cases are considered, both of premixed laminar flames (of thickness δL). We examine the solutions of the model PDF equations for these test cases as functions of Δ/δL and hL. Each of the two PDF models has advantages and disadvantages. The mean-drift model behaves correctly in the DNS limit, but it is more difficult to implement and computationally more expensive. The random-walk model does not have the correct behaviour in the DNS limit in that it produces non-zero residual fluctuations. However, if the specified mixing rate Ω normalised by the reaction timescale τc is sufficiently large (Ωτc ? 1), then the residual fluctuations are less than 10% and the observed flame speed and thickness are close to their laminar values. Away from the DNS limit (i.e. hL ? 1), the observed flame thickness scales with the mesh spacing h, and the flame speed scales with Ωh. For this case it is possible to construct a non-general specification of the mixing rate Ω such that the flame speed matches the laminar flame speed.
Keywords:PDF methods  large-eddy simulation  turbulent combustion  DNS limit  premixed flames
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号