首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium
Authors:L. M. Truskinovskii
Abstract:The phase transformation of the first kind in a non-linearly elastic heat conducting medium is simulated by the relationships on a strong discontinuity. A generalization of the Stefan formulation is given. An existence condition for stationary flow, analogous to the Gibbs phase equilibrium condition, is obtained for non-equilibrium phase boundaries. A pure dilatational phase transition in a compressible fluid and pure shear transformation of the twinning type in non-linearly elastic crystals are considered as model examples. The problem of the structure is solved for closure of the system of relationships on the shock.

A phase transformation ordinarily turns out to be localized in a narrow domain of space and it can be simulated in terms of the conditions on a strong discontinuity /1/. Formulation of the problem of the static equilibrium of liquid phases as well as of liquid and (non-linearly elastic) solid phases was given by Gibbs, who proposed a phase equilibrium criterion and formulated appropriate conditions on the shock; the extension of the Gibbs conditions to the case of the equilibrium of two solid phases is known in both the linear /2/ and non-linear /3/ theories of elasticity. The dynamic problem of the propagation of the equilibrium phase boundary is considered in the Stefan formulation as a rule, including the assumption about the continuity of the density (the strain tensor component) on the shock; the thermal problem is here separated from the mechanical one. Simulating the interphasal surface on the shock the temperature fields are merged by using the well-known Stefan conditions as well as the phase equilibrium condition that reduces to giving the temperature on the front.

The purpose of this paper is to extend the Stefan-Gibbs formulation to the case of the motion of a coherent isothermal phase boundary in a non-linearly elastic heat conducting medium and to derive the dynamic analogue of the phase equilibrium condition (and the Stefan conditions) with possible dissipation at the transformation front. Two dissipative mechanisms are examined, viscous and kinetic. The case of equilibrium phase boundaries was investigated in /4–6/.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号