首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An electrochemical approach tunes the electric property of benzoylferrocene-modified supported lipid membrane
Institution:1. College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China;2. Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore;3. Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
Abstract:A benzoylferrocene (BFc) supported 3-sn-phosphatidylcholine (PC) film electrode was prepared by casting the solution of BFc and PC in chloroform onto the surface of platinum (Pt). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results showed that BFc, retained in the biological membrane, acted as a shuttle for electron transfer across the supported bilayer lipid membranes (s-BLMs). Doping of BFc increased membrane conductivity, while electrochemical oxidation of BFc greatly changed the membrane conductivity, the membrane impedance characterized by charge transfer resistance (Rct) dramatically increased about 400 times (from 10.32 to 3919.67 kΩ). Interestingly, the electrochemical oxidized BFc buried in the membranes could be reduced by applying a low potential, and this led to recurrent of a conductive membrane. The conductivity of the s-BLMs could be controlled by the redox status of embedded BFc molecules. The approach provided a facile and novel way to electrochemically control the membrane conductance of s-BLMs by embedding BFc as a switchable redox mediator.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号