首页 | 本学科首页   官方微博 | 高级检索  
     


Modulating the coupling efficiency of human cytochrome P450 CYP3A4 at electrode surfaces through protein engineering
Affiliation:1. Division of Molecular Biosciences, Imperial College London, Biochemistry Building, Exhibition Road, London SW7 2AZ, UK;2. Department of Human and Animal Biology, University of Turin, Turin, Italy;3. NanoBioDesign Limited, Kent, UK
Abstract:This study shows that regulating the electron flow to the heme of human cytochrome P450 CYP3A4, using artificial redox chains, can significantly enhance its coupling efficiency and catalytic activity at electrode surfaces. The human CYP3A4 was fused at the genetic level either to the reductase domain of CYP102A1 (BMR) to create the CYP3A4/BMR or to Desulfovibrio vulgaris flavodoxin (FLD) to create the CYP3A4/FLD. Direct electrochemistry of the CYP3A4, CYP3A4/BMR and CYP3A4/FLD on glassy carbon and gold electrodes showed that the BMR and FLD flavo-proteins reduced the electron transfer rate to the CYP3A4 heme. Electrocatalysis resulted in appreciably higher product formation with the immobilized CYP3A4/BMR and CYP3A4/FLD on both surfaces due to an increased coupling efficiency. Rotating disk electrode studies and quantification of hydrogen peroxide were consistent with the proposed mechanism of a longer lived iron-peroxy species in the immobilized CYP3A4/BMR and CYP3A4/FLD. The approaches in this study provide a better understanding of cytochrome P450 uncoupling at electrode surfaces and aids in the construction of improved cytochrome P450 biosensors and bioelectrocatalysts.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号