首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sequence dependence of cytochrome c electrochemistry on DNA modified electrodes: Effect of hydrogen bonding of a ligand to nucleobases opposite an abasic site
Institution:Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
Abstract:The binding of a hydrogen bond-forming ligand to abasic (AP) site-containing DNA was electrochemically investigated for discrimination of a nucleotide opposite the AP site. The surface of a gold electrode was modified by AP site-containing DNA duplexes on which cytochrome c (Cyto c) was attached electrostatically as a probe. Cyto c showed quasi-reversible electrochemical behavior depending on the base opposite the AP site. When the base opposite the AP site was cytosine, much slower kinetics of Cyto c electron transfer was observed. This observation could be explained by previous reports that the base stacking was disturbed to a much greater extent because the cytosine base opposite the AP site was flipped out extra-helically. The binding of a hydrogen bond-forming ligand, 2-amino-7-methyl-1,8-naphthyridine (AMND), to cytosine opposite the AP site could significantly improve the electrochemical behavior of Cyto c, indicating effective base stacking due to the AMND binding. The present method demonstrates an easy way for investigating the binding of a small ligand to the AP site through DNA-mediated charge transfer.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号