首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhanced high-temperature cycle performance of LiFePO4/carbon batteries by an ion-sieving metal coating on negative electrode
Institution:1. Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan, ROC;2. Materials Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 310, Taiwan, ROC
Abstract:LiFePO4/mesocarbon microbead (MCMB) cells of which the carbon electrodes were, respectively, coated with different metal layers were characterized for their charge/discharge cycle performance at 55 °C. The examined metals included Au, Cu, Fe, Ni, Co, and Ti, and the superficial layers were 30–50 nm in thickness and deposited by vacuum sputtering. It was found that the presence of a either Au or Cu layer remarkably reduces capacity fading, while the rest metals only accelerate fading. There was observed a consistent trend between the capacity fading rate and the amount of the soild-electrolyte-interphase (SEI) deposition; the faster the capacity fading, the greater amount of SEI materials appearing on the surface of cycled carbon electrode. Microscopic and composition analyses indicates that the superficial Au and Cu layers act as a sieve to collect the Fe ions that result form erosion of LiFePO4 before they diffuse into the interior of the carbon electrode, and that the so-deposited Fe particles do not show the tendency to catalyze the SEI formation, as in contrast to those directly deposited on the carbon surfaces.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号