首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low-temperature mobility of surface electrons and ripplon-phonon interaction in liquid helium
Authors:A I Safonov  I I Safonova and S S Demukh
Institution:(1) B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin avenue, 61103 Kharkov, Ukraine
Abstract:The low-temperature dc mobility of the two-dimensional electron system localized above the surface of superfluid helium is determined by the slowest stage of the longitudinal momentum transfer to the bulk liquid, namely, by the interaction between the surface and volume excitations of liquid helium, which decreases rapidly with the temperature. Thus, the temperature dependence of the low-frequency mobility is μdc ≈ 8.4 × 10−11 n e T −20/3 cm4 K20/3/(V s), where n e is the surface electron density. The relation T 20/3 E−3 ≪ 2 × 10−7 between the pressing electric field (in kilovolts per centimeter) and temperature (in Kelvins) and the value ω ≲ 108 T 5 K−5 s−1 of the driving-field frequency have been obtained, at which the above effect can be observed. In particular, E ≃ 1 kV/cm corresponds to T ≲ 70 mK and ω/2π ≲ 30 Hz.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号