首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quasi-static behavior of Mg-alloys with and without short-fiber reinforcement
Authors:S Ataya  E El-Magd
Institution:aDepartment of Materials Science (LFW-RWTH), Aachen University Augustinerbach 4, D-52062 Aachen, Germany
Abstract:Magnesium alloys AE42 and AZ91 reinforced with 23 vol.% carbon short fibers (Df ≈ 7 μm, Lf ≈ 100 μm) were tested under quasi-static loading. The carbon fibers were quasi-isotropically distributed in the horizontal plane (reinforced plane) of the casting. Compression and tensile tests were carried out on both the matrix alloys and the composites at temperatures between 20 °C and 300 °C. Specimens were machined to be loaded either parallel or normal to the reinforced plane. Due to the reinforcement, the compression yield stress of the composite AE42-C increased to a value approximately three-fold greater than the yield strength of the matrix; for composite AZ91-C this parameter was approximately 2.5-fold greater than that of the AZ91 matrix. The improvement in tensile strength was less than that in compression, which could be related to early tensile fracture through decohesion at the matrix–fiber interface, as detected by SEM investigations conducted on failed tensile specimens. Flow curves for the matrix alloys at different temperatures were described by a modified Kocks–Mecking material law. An idealization of a 2-D mesomodel was used for finite-element simulation of the mechanical behavior of the composites. The fibers were first considered as elastic bodies and the behavior of the matrix material was set according to the material law determined from the flow curves for the matrix alloys. Other calculations were carried out by considering elasto-plastic behavior of the fibers for application of a failure initiation technique to simulate the behavior of the composite materials beyond the ultimate stress.
Keywords:Composite  Magnesium alloys  Short fibers  FE simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号