首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations
Authors:Sebastian Illes  Stephan Theiss  Hans-Peter Hartung  Mario Siebler  Marcel Dihné
Institution:1. Department of Neurology, Medical College of Georgia, 30912, Augusta, GA, USA
2. Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, 467-8601, Nagoya, Japan
3. Research and Affiliations Service Line, Augusta VAMC, 30912, Augusta, GA, USA
Abstract:

Background

Minocycline, a second-generation tetracycline with anti-inflammatory and anti-apoptotic properties, has been shown to promote therapeutic benefits in experimental stroke. However, equally compelling evidence demonstrates that the drug exerts variable and even detrimental effects in many neurological disease models. Assessment of the mechanism underlying minocycline neuroprotection should clarify the drug's clinical value in acute stroke setting.

Results

Here, we demonstrate that minocycline attenuates both in vitro (oxygen glucose deprivation) and in vivo (middle cerebral artery occlusion) experimentally induced ischemic deficits by direct inhibition of apoptotic-like neuronal cell death involving the anti-apoptotic Bcl-2/cytochrome c pathway. Such anti-apoptotic effect of minocycline is seen in neurons, but not apparent in astrocytes. Our data further indicate that the neuroprotection is dose-dependent, in that only low dose minocycline inhibits neuronal cell death cascades at the acute stroke phase, whereas the high dose exacerbates the ischemic injury.

Conclusion

The present study advises our community to proceed with caution to use the minimally invasive intravenous delivery of low dose minocycline in order to afford neuroprotection that is safe for stroke.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号