Spectral integration in bands of modulated or unmodulated noise |
| |
Authors: | Bacon Sid R Grimault Nicolas Lee Jungmee |
| |
Affiliation: | Department of Speech and Hearing Science, Arizona State University, Tempe 85287-1908, USA. spb@asu.edu |
| |
Abstract: | Spectral integration was measured for pure-tone signals masked by unmodulated or modulated noise bands centered at the signal frequencies. The bands were typically 100 Hz wide, and when modulated, they were sinusoidally amplitude modulated at a rate of 8 Hz and a depth of 100%. In experiment 1, thresholds were first measured for each individual pure tone of a triplet in the presence of its respective masker band, and then for those three tones added together at their respective threshold levels, masked by their respective masker bands. Four sets of triplets were used: 250, 1000, 4000 Hz; 354, 1000, 2828 Hz; 500, 1000, 2000 Hz; and 800, 1000, 1200 Hz. When the masker bands were unmodulated, the amount of spectral integration was about 2.4 dB for all triplets, consistent with the integration expected based on the multiband energy detector model. When the bands were modulated, the amount of integration depended upon the spacing between masker bands; for the two widest spacings, the integration was between about 0 and 3 dB, whereas for the two closest spacings, the integration was approximately 5 dB. Experiments 2 and 3 addressed the cause of this greater spectral integration in the presence of the modulated masker bands with closer spacing. The second experiment demonstrated that sensitivity (d') was proportional to signal power regardless of whether the background noise was modulated or not, and thus the greater integration in dB in the presence of the modulated noise bands could not be accounted for by shallower psychometric functions in those conditions. Instead, the third experiment showed that the greater integration was likely due to the fact that the masker bands were comodulated. In other words, it was probably due to cues related to comodulation masking release when all three bands (and signals) were present. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|