首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interfacial behavior of ACORGA CLX-50 and surface kinetics of copper extraction
Authors:C Bouvier  G Cote  A Sobczynska  M B Bogacki  J Szymanowski
Institution:1. Laboratoire de Chimie Analytique (Unité associée au CNRS No. 437), E.S.P.C.I., 10, rue Vauquelin, 75005, Paris, France
2. Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. Sklodowskiej-Curie 2, 60-976, Poznan, Poland
Abstract:Interfacial tension isotherms were determined and interpreted for ACORGA CLX-50. The hydration of extractant molecules in aqueous solution and at hydrocarbon/water interfaces was studied by molecular modelling. The usefulness of this technique to interpret the adsorption behavior was demonstrated. The interfacial kinetics was considered and relationships for various models of interfacial mechanism were derived and discussed. Despite its high hydrophobicity, ACORGA CLX 50 strongly adsorbs at the hydrocarbon/water interfaces and thus decreases effectively the interfacial tension. This high interfacial activity of ACORGA CLX 50 can be explained by the formation of hydrates. The interfacial tension isotherm can be well matched with the Szyszkowski equation. Molecular modelling suggests that ACORGA CLX 50 adsorbs at the hydrocarbon/water interface probably as a tetrahydrate containing two water molecules bonded to the same carbonyl oxygen atom (e.g., at position 3), one water molecule bonded to the oxygen atom of the second alkoxyl group (i.e., at position 5 when the hydration of carbonyl oxygen at position 3 is previously considered) and, finally, one water molecule bonded with the pyridine nitrogen atom. Positions 3 and 5 are equivalent. It is also shown that when the extraction of copper takes place in the kinetic regime, the reaction order with respect to ACORGA CLX 50 can change depending on the limiting step and the range of extractant concentration considered. Thus, a decrease of the extractant concentration from 10?5M to 3·10?3M causes a fall of the order with respect to ACORGA CLX 50 from 1 to 0 and 2 to 1 when the formation of the intermediate 1∶1 and final 2∶1 complexes are considered to be the limiting step, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号