首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A robust Lagrangian-DNN method for a class of quadratic optimization problems
Authors:Naohiko Arima  Sunyoung Kim  Masakazu Kojima  Kim-Chuan Toh
Institution:1.Department of Mathematical and Computing Sciences,Tokyo Institute of Technology,Tokyo,Japan;2.Department of Mathematics,Ewha W. University,Seoul,Korea;3.Department of Industrial and Systems Engineering,Chuo University,Tokyo,Japan;4.Department of Mathematics,National University of Singapore,Singapore,Singapore
Abstract:The Lagrangian-doubly nonnegative (DNN) relaxation has recently been shown to provide effective lower bounds for a large class of nonconvex quadratic optimization problems (QAPs) using the bisection method combined with first-order methods by Kim et al. (Math Program 156:161–187, 2016). While the bisection method has demonstrated the computational efficiency, determining the validity of a computed lower bound for the QOP depends on a prescribed parameter \(\epsilon > 0\). To improve the performance of the bisection method for the Lagrangian-DNN relaxation, we propose a new technique that guarantees the validity of the computed lower bound at each iteration of the bisection method for any choice of \(\epsilon > 0\). It also accelerates the bisection method. Moreover, we present a method to retrieve a primal-dual pair of optimal solutions of the Lagrangian-DNN relaxation using the primal-dual interior-point method. As a result, the method provides a better lower bound and substantially increases the robustness as well as the effectiveness of the bisection method. Computational results on binary QOPs, multiple knapsack problems, maximal stable set problems, and quadratic assignment problems illustrate the robustness of the proposed method. In particular, a tight bound for QAPs with size \(n=50\) could be obtained.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号