首页 | 本学科首页   官方微博 | 高级检索  
     


Adsorption-desorption properties and surface structural chemistry of chlorine on Cu(111) and Ag(111)
Authors:P.J Goddard  R.M Lambert
Affiliation:Department of Physical Chemistry, University of Cambridge, Cambridge CB2 1EP, England
Abstract:The adsorption, desorption, and structural properties of chlorine adlayers on Cu(111) and Ag(111) have been studied by LEED, Auger, Δ?, and thermal desorption measurements. Ancillary experiments were also carried out on cuprous chloride for purposes of comparison with the Cu(111)-Cl data. Chlorine adsorption is rapid on both metals and follows precursor kinetics, the absolute initial sticking probabilities being ~1.0 (Cu) and ~0.5 (Ag). Δ? results suggest that significant depolarisation of the chemisorption bond occurs at high coverages, the maximum values being + 1.2 eV (Cu) and + 1.8 eV (Ag). On Cu(111), adsorption leads to the formation of a sequence of well-ordered phases; in order of increasing coverage, these are as follows: (√3 × √3)R30°, (12√3 × 12√3)R30°, (4√7 × 4√7)R19.2°, and (6√3 × 6√3)R30°. On Ag(111) (√3 × √3)R30°, and (10 × 10) structures are observed. All six structures are susceptible to a straightforward interpretation in terms of coincidence lattices resulting from the progressive uniform compression of a hexagonal layer of Cl atoms. This interpretation is consistent with all the experimental results, and gives values for the nearest-neighbour ClCl spacing on both Cu(111) and Ag(111) which are in good agreement with other work on other surfaces. Chlorine desorbs exclusively as atoms from both metals with first-order desorption kinetics, and apparent desorption energies of 236 (Cu) and 209 (Ag) kJ mol?1. These values, which depend on an assumed pre-exponential factor of 1013 s?1, are shown to be inconsistent with the thermochemical constraints on the system necessitated by the complete absence of Cl2 desorption. Lower limits for the pre-exponential factors are then deduced, and the values are found to be consistent with the differences between the CuCl and AgCl systems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号