首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A LEED and AES study of the structure,debye temperature,and oxidation of the (111) crystal face of thorium
Authors:R Bastasz  CA Colmenares  RL Smith  GA Somorjai
Institution:University of California, Lawrence Livermore Laboratory, Livermore, California 94550, USA;University of California, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA
Abstract:The structure, and reactivity towards O2 and CO, of the (111) crystal face of a single crystal of high purity thorium metal was studied using low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES). After the sample was cleaned in vacuum by a combination of ion bombardment and annealing, a (1 × 1) LEED pattern characteristic of a (111) surface was obtained. Extended annealing of the cleaned sample at 1000 K produced a new LEED pattern characteristic of a (9 × 9) surface structure. A model of a reconstructed thorium surface is presented that generates the observed LEED pattern. When monolayer amounts of either O2 or CO were adsorbed onto the crystal surface at 300 K, no ordered surface structures formed. Upon heating the sample following these exposures the (111) surface structure was restored accompanied by a reduction in the amount of surface carbon and oxygen. With continued exposure to either O2 or CO and annealing, a new LEED pattern developed which was interpreted as resulting from the formation of thorium dioxide. Debye-Walter factor measurements were made by monitoring the intensity of a specularly reflected electron beam and indicated that the Debye temperature of the surface region is less than it is in bulk thorium. Consequently, the mean displacement of thorium atoms from their equilibrium positions was found to increase at the surface of the crystal. The presence of chemisorbed oxygen on the crystal surface affected the Debye temperature, raising it significantly.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号