首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular beam surface ionization detection: II. Field reversal and surface ionization study of Na on Re with adsorbed oxygen
Authors:Leif Holmlid  JimO Olsson
Institution:Department of Physical Chemistry, University of Göteborg, Pack, S-402 20 Göteborg, Sweden
Abstract:The desorption and surface ionization of Na on a polycrystalline Re surface with various amounts of adsorbed oxygen have been studied by field reversal, surface ionization and thermoelectronic emission methods. In this work the unique properties of the field reversal method are taken advantage of, i.e. that both neutral and ionic desorption rate constants can be determined simultaneously. Absolute ionization coefficients have been measured by field reversal and have been compared with values found by the “oxygen coverage” method and by static surface ionization. The application to beam flux density determinations is discussed. The simultaneous variation of the neutral and ionic desorption rate constants during oxygen adsorption and the temperature dependence of them have been studied. The Re surface in 2 × 10?8 Torr of oxygen and at 1300–1500 K is shown to be very stable and to behave differently than in studies at higher temperatures. The very rapid change in both desorption rate constants at an effective work function Φe = 5.35 V is here correlated with the results of LEED experiments (Gorodetskii and Knysh) and is proposed to indicate a change from a stable Re oxide surface at low Φe (and oxygen coverage) to a different surface structure at higher Φe. Desorption energies have been determined at various values of Φe. The neutral desorption energy at low oxygen pressure is 2.70 ± 0.06 eV, which agress well with earlier, here corrected modulated beam results. The energy (Schottky) cycle for surface ionization is shown to be closed at low Φe, which has been difficult to show with other methods in any other case.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号