首页 | 本学科首页   官方微博 | 高级检索  
     检索      


X-ray photoemission study of physically absorbed SF6
Authors:Galen B Fisher  Nils E Erikson  Theodore E Madey  John T Yates
Institution:Surface Processes and Catalysis Section, National Bureau of Standards, Washington, DC 20234, USA
Abstract:The physical adsorption of octahedral SF6 on Ru(001) has been studied with X-ray photoelectron spectroscopy (XPS) in an attempt to see effects on the energy levels resulting from the conformation of the molecule on the surface. Near 80 K surface coverages up to a monolayer have been studied at various steady state pressures of SF6. Kinetic studies, core level binding energies, and peak areas indicate that the surface species studied was a physically adsorbed monolayer of sf6. The sticking coefficient of SF6, at ? 80 K is approximately unity. Also, a multilayer structure was observed at the highest pressures of SF6. The binding energy of the F(ls) peak for monolayer coverage is centered at 688.2 ± 0.2 eV relative to the Ru Fermi level. while the multilayer F(ls) peak is shifted more than 3.5 eV to higher binding energy. The F(ls) linewidth for one monolayer has a full width at half maximum of 1.75 ± 0.1 eV. The F(ls) linewidth of the multilayer peak narrows with increasing coverage. Its narrowest observed linewidth was 1.35 eV ± 0.1 eV or approximately the same as that found in the gas phase. One of the mechanisms which may account for the F(ls) linewidth with monolayer coverage is a difference in F(ls) binding energy between those F atoms in contact with the substrate and those further away. This may be due to the variation in chemical environment and relaxation effects as a function of distance from tlie substrate. A classical image force calculation including finite screening effects of the substrate indicates that there is a differential binding energy, ΔW. between the F ligands; ΔW = 0.85 ± 0.25 eV, for realistic ranges of adsorption distances from the substrate and screening lengths in the substrate. The observed broadening of the monolayer F(ls) level is consistent with a ΔW of 0.7 ± 0.1 eV, indicating the possible existence of such a mechanism. Adsorption of a monolayer of SF6 onto the Ru covered with a monolayer of oxygen shifts the F(ls) peak to lower binding energy by 0.8 eV. Similar effects due to oxygen have been observed previously in the physical adsorption of Xe on W(111).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号