首页 | 本学科首页   官方微博 | 高级检索  
     


Self‐assembly of stearic acid on aluminium: the importance of oxide surface chemistry
Abstract:The influence of ambient atmospheric exposure on the chemistry of the magnetron‐sputtered aluminium surface has been characterized as hydroxyl incorporation to the oxide surface and concurrent adsorption of airborne carbonaceous contamination. Here, the consequence of these changes in oxide surface chemistry upon the adsorption of stearic acid from solution is investigated. Water contact angle and polarization modulation infrared refection–absorption spectroscopy (PM‐IRRAS) reveal a strong dependence of stearic acid monolayer order upon ambient exposure time prior to assembly. It is proposed that hydroxyl formation in the ambient atmosphere increases the stearic acid adsorption density and thus the self‐assembled monolayer (SAM) order, whereas airborne carbonaceous material blocks these adsorption sites and introduces disorder in the monolayers through a decrease in adsorption density. Monolayer adsorption has been correlated with the aluminium oxide surface chemistry. It is proposed that this phenomenon represents an explanation for the irreproducible results often reported for assembly on metal oxide substrates. Furthermore, it indicates that in this broad class of material surfaces assembly can be used as a means of estimating the reactivity of surfaces with respect to organic overlayers such as paints and adhesives. Removal of adsorbed carbonaceous material from the aluminium surface using an oxygen plasma resulted in a significantly increased order of the stearic acid monolayer, as assessed by water contact angle. This observation is rationalized as the removal of carbonaceous material blocking surface adsorption sites by the plasma, but retention of the underlying hydroxyl functionality. This is predicted to have important implications in the preparation of aluminium for painting and adhesive bonding. Copyright © 2004 John Wiley & Sons, Ltd.
Keywords:SAM  PM‐IRRAS  oxide chemistry  aluminium
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号