Abstract: | A novel, fluoride‐releasing dimethacrylate monomer containing zirconium fluoride chelate for use in dental composites was synthesized by an efficient four‐step procedure starting from 4,4‐bis‐(4‐hydroxyphenyl)‐pentanoic acid and was characterized by electrospray mass spectrometry, Fourier transform infrared (FTIR), and 1H and 13C NMR spectroscopies. The synthesized monomer was photopolymerized with camphorquinone and 1‐phenyl‐1,2‐propane‐dione as initiators and N,N‐dimethylaminoethyl methacrylate as an accelerator. The photopolymerization process was investigated by FTIR spectroscopy. The experimental composite containing 13.7 wt % of the synthesized monomer was tested for fluoride release, fluoride recharge, compressive strength, and flexure strength, each in comparison to three commercial flowable dental composites. The results showed that the experimental composite had significantly higher fluoride release and fluoride recharge capabilities than the commercial flowable composites. The flexure strength was comparable to the commercial materials. The water sorption and solubility met the requirements of the International Organization for Standardization 4049 and the American National Standards Institute/American Dental Association Specification Number 27. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 985–998, 2004 |