Abstract: | Ethylene propylene diene rubber‐fullerene (EPDM/C60) composite, partially crosslinked by ultraviolet (UV) radiation, was prepared and characterized for crosslink density, mechanical properties and thermal behavior. FT‐IR analysis showed peak disappearance at 1688 cm?1, corresponding to the unsaturation of EPDM, and the appearance of new peaks relating to the formation of oxidation products of C60, such as epoxide, keto, aldehyde and carboxylic groups. Solubility studies demonstrated the dissolution of pristine EPDM in toluene even after a longer period of UV exposure, whereas EPDM/C60 composite became insoluble and/or swollen after 6 hr of UV exposure, indicating the formation of partial crosslinking between EPDM and C60. Differential scanning calorimetry (DSC) measurements revealed an increase in the glass transition temperature peak of UV‐cured EPDM. Thermogravimetric analysis (TGA) showed that UV exposure reduced the thermal decomposition temperature of EPDM/C60, pristine EPDM and dicumyl peroxide (DCP)‐cured EPDM. The modulus, tensile stress and elongation at break of EPDM/C60 composites were greatly influenced by the duration of UV irradiation. Comparison of UV‐cured EPDM/C60 composite with DCP‐cured EPDM confirmed the superior strength properties of the former system. Copyright © 2004 John Wiley & Sons, Ltd. |