首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of Pluronic F127 on the pore structure of macrocellular biodegradable polylactide foams
Authors:Rong Zhang  Wenjian Weng  Piyi Du  Gaoling Zhao  Ge Shen  Gaorong Han
Abstract:Thermally induced phase separation technique was utilized to fabricate biodegradable poly(l ‐lactic acid) (PLLA) macrocellular foams which were capable of being applied in tissue engineering. The block copolymer Pluronic F127 composed of (polyethyleneoxide)‐(polypropyleneoxide)‐(polyethyleneoxide) (PEO)‐(PPO)‐(PEO)] was used as a porogen. Water/dioxane mixtures with different volume ratios were used as solvents. The addition of Pluronic F127 could induce an appearance of large pores (50–200 μm) besides small pores (10–20 μm) or a change from a solid–liquid phase separation to a liquid–liquid phase separation. The role of Pluronic F127 depends on the water/dioxane ratios in the PLLA/dioxane/water system. The X‐ray diffraction patterns and porosity measurement results showed that Pluronic F127 was crystallized and existed on the pore wall. The effect of Pluronic F127 on changing pore structure is attributed to the occurrence of the interaction of the lipophilic PPO blocks in Pluronic F127 with PLLA clews, consequently, this results in PLLA aggregation and early phase separation on cooling. Copyright © 2004 John Wiley & Sons, Ltd.
Keywords:poly(l‐lactic acid) foam  block copolymers  Pluronic F127  pore structure  phase separation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号