首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Formation of interstellar vinyl alcohol via simple radical processes: Theoretical study
Authors:Vladimir A Basiuk  Kensei Kobayashi
Abstract:Density functional theory calculations at the B3LYP/6‐31++G(d,p) level of theory were employed to verify whether the formation of vinyl alcohol (VA) in the interstellar medium can be explained by reactions of common and abundant interstellar species such as acetylene, radicals C2, HC? C · , · OH, and H · . Several reaction sequences are possible. They include radical combinations, which proceed without activation barriers and are highly exothermic. The reactions of closed‐shell species acetylene and HC?C‐OH with hydrogen atoms, as well as H‐transfer and OH‐rotation processes, might require activation energy. Nevertheless, either the corresponding transition states lay below the reactant level or there are alternative routes that involve no transition states at all, such as the reaction sequences C2 → HC?C · → HC?CH → transsyn‐HC( · )?CH‐OH → syn‐VA; C2 → HC?C · → syn‐?C?CH‐OH → (trans or cis)‐syn‐HC( · )?CH‐OH → syn‐VA; and C2 → · C?C‐OH → syn‐:C?CH‐OH → (trans or cis)‐syn‐HC( · )?CH‐OH → syn‐VA. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004
Keywords:vinyl alcohol  interstellar  DFT  B3LYP  radical reactions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号