首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Miscibility and surface properties of fluorinated copolymer blends involving hydrogen‐bonding interactions
Authors:H L Huang  S H Goh  Doreen M Y Lai  A T S Wee  C H A Huan
Abstract:The miscibility and underlying hydrogen‐bonding interactions of blends of a fluorinated copolymer containing pyridine and a nonfluorinated copolymer containing methacrylic acid were studied with differential scanning calorimetry (DSC), transmission Fourier transform infrared (TX‐FTIR) spectroscopy, and X‐ray photoelectron spectroscopy (XPS), whereas the surface properties of the blends were investigated with contact‐angle measurements, time‐of‐flight secondary‐ion mass spectroscopy, XPS, and attenuated total reflectance Fourier transform infrared spectroscopy. DSC studies showed that the presence of a sufficient amount of 4‐vinylpyridine units in the fluorinated copolymer produced miscible blends with the nonfluorinated copolymer containing methacrylic acid. TX‐FTIR and XPS showed the existence of pyridine–acid interpolymer hydrogen‐bonding interactions. Even though the anchoring effect of hydrogen bonding hindered the migration of the fluorinated component to the blend surface, it could not completely eliminate the surface enrichment of the fluorinated component and the surface rearrangement of the fluorinated pendant chain. The air–blend interface was mainly occupied by the fluorinated pendant chain, and the surface energies of the blends were extremely low, even with only 1.5 wt % of the fluorinated component in the blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1145–1154, 2004
Keywords:fluorinated polymer blends  miscibility  specific interactions  surface properties  FT‐IR  ESCA/XPS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号