首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound
Authors:Angle S R  Sena K  Sumner D R  Virdi A S
Institution:a Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
b Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA
Abstract:Bone growth and repair are under the control of biochemical and mechanical signals. Low-intensity pulsed ultrasound (LIPUS) stimulation at 30 mW/cm2 is an established, widely used and FDA approved intervention for accelerating bone healing in fractures and non-unions. Although this LIPUS signal accelerates mineralization and bone regeneration, the actual intensity experienced by the cells at the target site might be lower, due to the possible attenuation caused by the overlying soft tissue. The aim of this study was to investigate whether LIPUS intensities below 30 mW/cm2 are able to provoke phenotypic responses in bone cells. Rat bone marrow stromal cells were cultured under defined conditions and the effect of 2, 15, 30 mW/cm2 and sham treatments were studied at early (cell activation), middle (differentiation into osteogenic cells) and late (biological mineralization) stages of osteogenic differentiation. We observed that not only 30 mW/cm2 but also 2 and 15 mW/cm2, modulated ERK1/2 and p38 intracellular signaling pathways as compared to the sham treatment. After 5 days with daily treatments of 2, 15 and 30 mW/cm2, alkaline phosphatase activity, an early indicator of osteoblast differentiation, increased by 79%, 147% and 209%, respectively, compared to sham, indicating that various intensities of LIPUS were able to initiate osteogenic differentiation. While all LIPUS treatments showed higher mineralization, interestingly, the highest increase of 225% was observed in cells treated with 2 mW/cm2. As the intensity increased to 15 and 30 mW/cm2, the increase in the level of mineralization dropped to 120% and 82%. Our data show that LIPUS intensities lower than the current clinical standard have a positive effect on osteogenic differentiation of rat bone marrow stromal cells. Although Exogen™ at 30 mW/cm2 continues to be effective and should be used as a clinical therapy for fracture healing, if confirmed in vivo, the increased mineralization at lower intensities might be the first step towards redefining the most effective LIPUS intensity for clinical use.
Keywords:Low-intensity pulsed ultrasound  Fracture healing  Bone marrow derived stromal cells  Osteogenesis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号