Laminated morphology of nontwisting beta-sheet fibrils constructed via peptide self-assembly |
| |
Authors: | Lamm Matthew S Rajagopal Karthikan Schneider Joel P Pochan Darrin J |
| |
Affiliation: | Department of Materials Science and Engineering, the Delaware Biotechnology Institute, Newark, Delaware 19716, USA. |
| |
Abstract: | A synthetic peptide has been de novo designed that self-assembles into beta-sheet fibrils exhibiting a nontwisted, stacked morphology. The stacked morphology is constituted by 2.5 nm wide filaments that laterally associate to form flat fibril laminates exceeding 50 nm in width and micrometers in length. The height of each fibril is limited to the length of exactly one peptide monomer in an extended beta-strand conformation, approximately 7 nm. Once assembled, these highly ordered, 2-D structures are stable over a wide range of pH and temperature and exhibit characteristics similar to those of amyloid fibrils. Furthermore, the rate of assembly and degree of fibril lamination can be controlled with kinetic parameters of pH and temperature. Finally, the presence of a diproline peptide between two beta-sheet-forming strands in the peptide sequence is demonstrated to be an important factor in promoting the nontwisting, laminated fibril morphology. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|