My voyage of discovery to proteins in flatland ...and beyond |
| |
Authors: | Norde Willem |
| |
Affiliation: | Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Wageningen, The Netherlands. willem.norde@wur.nl |
| |
Abstract: | The 9th-10th type III fibronectin domain pair (9-10FNIII) has found widespread use as a biomimetic surface for cell adhesion. However, the effect of mutations to 9-10FNIII on its surface adsorption characteristics have not been investigated. Here we address this issue using total internal reflection fluorescence (TIRF) and circular dichroism spectroscopy, comparing two conformationally stable 9-10FNIII mutants against the wild type. Desorption of the 9-10FNIII mutants from the silica surface was minimal in comparison to desorption of 9-10FNIII. The extent and rate of protein desorption from silica was empirically matched by loss of secondary structure upon adsorption, with only the spectrum for 9-10FNIII showing extensive loss of the beta-sandwich fold. For the proteins adsorbed to hydrophobic surfaces, only the CD spectra for the 9-10FNIII mutant constrained via an interdomain disulphide bridge showed similarity with the corresponding solution structure. Since the binding of 9-10FNIII to integrin alpha5beta1 is highly dependent on the relative spatial arrangement of the two domains, we suggest that the observed differences in cell adhesion and spreading on wild type 9-10FNIII and mutants may in part be attributed to the extent of protein desorption and unfolding at the surface. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|