首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model
Authors:JW Signorelli  MA BertinettiPA Turner
Institution:IFIR (CONICET-UNR), 27 de febrero 210 bis, 2000 Rosario, Santa Fe, Argentina; FCEIA (UNR) Pellegrini 250, 2000 Rosario, Argentina
Abstract:In the sheet-metal forming industry, forming-limit strains have been a useful tool for quantifying metals formability. However, the experimental measurement of these strains is a difficult, time consuming and expensive process. It would be useful if strains calculated with a theoretical model could replace many of the experimental measurements. In this research, we analyze forming-limit strains of metals using a rate-dependent plasticity, polycrystal, self-consistent (VPSC) model in conjunction with the Marciniak–Kuczynski (M–K) approach. Previous researchers have studied forming limit diagrams (FLDs) based on the full-constraints Taylor model. This is the first time, to the authors’ knowledge, that the self-consistent approach has been introduced to simulate the polycrystal FLD behavior. Numerous microstructural factors characterizing the material have a strong influence on the FLD, so our model includes the effects of slip hardening, strain-rate sensitivity, anisotropy and initial texture. Finally, the calculation of the FLD with a more realistic scale transition successfully predicts some of the experimental tendencies that the Taylor model cannot reproduce for aluminum alloys AA6116-T4 and AA5182-O.
Keywords:Forming limit diagrams  Polycrystalline plasticity  Marciniak&ndash  Kuczynski analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号