首页 | 本学科首页   官方微博 | 高级检索  
     


A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales
Authors:Z.L. Liu  X.M. LiuZ. Zhuang  X.C. You
Affiliation:Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing 100084, China
Abstract:Plastic flow in crystal at submicron-to-nanometer scales involves many new interesting problems. In this paper, a unified computational model which directly combines 3D discrete dislocation dynamics (DDD) and continuum mechanics is developed to investigate the plastic behaviors at these scales. In this model, the discrete dislocation plasticity in a finite crystal is solved under a completed continuum mechanics framework: (1) an initial internal stress field is introduced to represent the preexisting stationary dislocations in the crystal; (2) the external boundary condition is handled by finite element method spontaneously; and (3) the constitutive relationship is based on the finite deformation theory of crystal plasticity, but the discrete plastic strains induced by the slip of the newly nucleated or propagating dislocations are calculated by dislocation dynamics methodology instead of phenomenological evolution equations used in conventional crystal plasticity. These discrete plastic strains are then localized to the continuum material points by a Burgers vector density function proposed by us. Various processes, such as loop dislocation evolution, dislocation junction formation etc., are simulated to verify the reliability of this computational model. Specifically, a uniaxial compression test for micro-pillars of Cu is simulated by this model to investigate the ‘dislocation starvation hardening’ observed in the recent experiment.
Keywords:Computational model   Crystal plasticity   Dislocation dynamics   Continuum mechanics   Dislocation starvation hardening
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号