首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A dislocation density based material model to simulate the anisotropic creep behavior of single-phase and two-phase single crystals
Authors:J Preußner  Y Rudnik  H Brehm  R Völkl  U Glatzel
Institution:1. Metals and Alloys, University of Bayreuth, Ludwig-Thoma-Strasse 36b, 95447 Bayreuth, Germany;2. Fraunhofer Institut für Fertigungstechnik und Angewandte Materialforschung (IFAM), Wiener Strasse 12, 28359 Bremen, Germany;3. Behr GmbH & Co. KG, Mauserstrasse 3, 70469 Stuttgart, Germany
Abstract:The primary and secondary creep behavior of single crystals is observed by a material model using evolution equations for dislocation densities on individual slip systems. An interaction matrix defines the mutual influence of dislocation densities on different glide systems. Face-centered cubic (fcc), body-centered cubic (bcc) and hexagonal closed packed (hcp) lattice structures have been investigated. The material model is implemented in a finite element method to analyze the orientation dependent creep behavior of two-phase single crystals. Three finite element models are introduced to simulate creep of a γ′ strengthened nickel base superalloy in 〈1 0 0〉, 〈1 1 0〉 and 〈1 1 1〉 directions. This approach allows to examine the influence of crystal slip and cuboidal microstructure on the deformation process.
Keywords:Dislocations  Creep  Constitutive equations  Finite elements  Anisotropic material
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号