首页 | 本学科首页   官方微博 | 高级检索  
     


Luminescent properties and energy transfer process of Sm3+-Eu3+ co-doped MY2(MoO4)4 (M=Ca,Sr and Ba) red-emitting phosphors
Affiliation:1. College of Mathematics and Physics, Jinggangshan University, Ji''an, 343009, China;2. School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
Abstract:MY2(MoO4)4:Sm3+ and MY2(MoO4)4:xSm3+,yEu3+ (M=Ca, Sr and Ba) phosphors were successfully prepared using solid-state reaction route, and their luminescent properties and energy transfer process from Sm3+ to Eu3+ were systematically investigated. The results indicate that MY2(MoO4)4:Sm3+ phosphors can be effectively excited by 407 nm near UV light originating from the 6H5/2 → 4F7/2 transition of Sm3+, and exhibit a satisfactory red emission at 646 nm attributed to the 4G5/2 → 6H9/2 transition of Sm3+, in which the emission intensity of SrY2(MoO4)4:Sm3+ is the strongest among the MY2(MoO4)4:Sm3+ (M=Ca, Sr and Ba) phosphors. For Eu3+ co-doped MY2(MoO4)4:Sm3+ samples, with increasing Eu3+ doping content, the main emission peaks of Sm3+ (approximately 646 nm) are decreased, but the emission peaks and intensity of Eu3+ are increased while the maximum intensity of luminescence at the Eu3+ concentration 0.9. The introduction of Eu3+ in the MY2(MoO4)4:Sm3+ phosphors can remarkably generate a strong emission line at 616 nm, originating from the 5D07F2 transition of Eu3+ and Sm3+ (4G5/2) → Eu3+ (5D0) effective energy transfer process. The energy transfer mechanism from Sm3+ to Eu3+ was discussed in detail.
Keywords:Luminescent properties  Energy transfer mechanism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号