首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two-dimensional center-of-mass diffusion of lipid-tethered poly(2-methyl-2-oxazoline) at the air-water interface studied at the single molecule level
Authors:Lüdtke Karin  Jordan Rainer  Furr Nathan  Garg Sumit  Forsythe Kelsey  Naumann Christoph A
Institution:Department Chemie, Technische Universit?t München, Garching, Germany.
Abstract:The two-dimensional (2D) center-of-mass diffusion, D, of end-tethered poly(2-methyl-2-oxazoline) (PMOx) lipopolymer chains was studied in a Langmuir monolayer at the air-water interface using wide-field single molecule fluorescence microscopy. In this case, tethering and stabilization of hydrophilic PMOx chains at the air-water interface is accomplished via end-tethering to lipid molecules forming a hydrophobic anchor. To explore the influence of molecular weight, M n, and surface concentration, c s, on lateral mobility, two different PMOx chain lengths of n = 30 and 50 ( n, number of monomer units) were analyzed over a wide range of c s. Using multiparticle tracking analysis of TRITC-labeled PMOx lipopolymers, we found two regimes of lipopolymer lateral mobility. At low c s, D is independent of surface concentration but increases with decreasing n. Here diffusion properties are well described by the Rouse model. In contrast, at more elevated c s, the data do not follow Rouse scaling but are in good agreement with a free area-area model of diffusion. The current study provides for the first time experimental insight into the 2D center-of-mass diffusion of end-tethered polymers at the air-water interface. The obtained results will be of importance for the understanding of diffusion processes in polymer-tethered phospholipid bilayers mimicking biomembranes at low and high tethering concentrations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号