首页 | 本学科首页   官方微博 | 高级检索  
     


Passivated‐electrode insulator‐based dielectrophoretic separation of heterogeneous cell mixtures
Authors:Kruthika Kikkeri  Bethany A. Kerr  Andrea S. Bertke  Jeannine S. Strobl  Masoud Agah
Abstract:Rapid and accurate purification of various heterogeneous mixtures is a critical step for a multitude of molecular, chemical, and biological applications. Dielectrophoresis has shown to be a promising technique for particle separation due to its exploitation of the intrinsic electrical properties, simple fabrication, and low cost. Here, we present a geometrically novel dielectrophoretic channel design which utilizes an array of localized electric fields to separate a variety of unique particle mixtures into distinct populations. This label‐free device incorporates multiple winding rows with several nonuniform structures on to sidewalls to produce high electric field gradients, enabling high locally generated dielectrophoretic forces. A balance between dielectrophoretic forces and Stokes’ drag is used to effectively isolate each particle population. Mixtures of polystyrene beads (500 nm and 2 μm), breast cancer cells spiked in whole blood, and for the first time, neuron and satellite glial cells were used to study the separation capabilities of the design. We found that our device was able to rapidly separate unique particle populations with over 90% separation yields for each investigated mixture. The unique architecture of the device uses passivated‐electrode insulator‐based dielectrophoresis in an innovative microfluidic device to separate a variety of heterogeneous mixture without particle saturation in the channel.
Keywords:breast cancer  circulating tumor cells  dielectrophoresis  neuron cells  satellite glial cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号