首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation on the Growth Mechanism of Cu2MoS4 Nanotube,Nanoplate and its use as a Catalyst for Hydrogen Evolution in Water
Authors:Ly T. Le,Thao T. T. Nguyen,Trang T. T. Nguyen,Mai T. T. Nguyen,Thuy &#x  T. D. Ung,Phong D. Tran
Affiliation:Ly T. Le,Thao T. T. Nguyen,Trang T. T. Nguyen,Mai T. T. Nguyen,Thuy T. D. Ung,Phong D. Tran
Abstract:Cu2MoS4 is a ternary transition‐metal sulfide that shows great potential in the field of energy conversion and storage, namely catalytic H2 evolution in water and Li‐, Na‐ or Mg‐ion battery. In this work, we report on a growth mechanism of the single‐crystalline Cu2MoS4 nanotube from (NH4)2MoS4 salt and Cu2O nanoparticle. By probing the nature and morphology of solid products generated in function of reaction conditions we find that the crystalline Cu(NH4)MoS4 nanorod is first generated at ambient conditions. The nanorod is then converted into Cu2MoS4 nanotube under hydrothermal treatment due to the Kirkendall effect or a selective etching of the Cu2MoS4 core. Extending the hydrothermal treatment causes a collapse of nanotube generating Cu2MoS4 nanoplate. The catalytic activities of these sulfides are investigated. The Cu2MoS4 shows superior catalytic activity to that of Cu(NH4)MoS4. Catalytic performance of the former largely depends on its morphology. The nanoplate shows superior catalytic activity to the nanotube, thanks to its higher specific electrochemical surface area.
Keywords:Inorganic nanotube  metal chalcogenide  mechanism  Kirkendall effect  water splitting
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号