首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hyperbranched Poly(ester‐enamine) from Spontaneous Amino‐yne Click Reaction for Stabilization of Gold Nanoparticle Catalysts
Authors:Dong Yang  Pei Liu  Wanran Lin  Shanglin Sui  Long‐Biao Huang  Ben Bin Xu  Jie Kong
Abstract:Hyperbranched polymers have garnered much attention due to attractive properties and wide applications, such as drug‐controlled release, stimuli‐responsive nano‐objects, photosensitive materials and catalysts. Herein, two types of novel hyperbranched poly(ester‐enamine) (hb‐PEEa) were designed and synthesized via the spontaneous amino‐yne click reaction of A2 monomer (1, 3‐bis(4‐piperidyl)‐propane (A2a) or piperazine (A2b)) and B3 monomer (trimethylolpropanetripropiolate). According to Flory's hypothesis, gelation is an intrinsic problem in an ideal A2+B3 polymerization system. By controlling the polymerization conditions, such as monomer concentration, molar ratio and rate of addition, a non‐ideal A2+B3 polymerization system can be established to avoid gelation and to synthesize soluble hb‐PEEa. Due to abundant unreacted alkynyl groups in periphery, the hb‐PEEa can be further functionalized by different amino compounds or their derivates. The as‐prepared amphiphilic PEG‐hb‐PEEa copolymer can readily self‐assemble into micelles in water, which can be used as surfactant to stabilize Au nanoparticles (AuNPs) during reduction of NaBH4 in aqueous solution. As a demonstration, the as‐prepared PEG‐hb‐PEEa‐supported AuNPs demonstrate good dispersion in water, solvent stability and remarkable catalytic activity for reduction of nitrobenzene compounds.
Keywords:hyperbranched polymers  amino-yne click reaction  nanocatalyst  reduction reaction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号