首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efficiency droop suppression in GaN-based light-emitting diodes by chirped multiple quantum well structure at high current injection
Abstract:Gallium nitride(Ga N) based light-emitting diodes(LEDs) with chirped multiple quantum well(MQW) structures have been investigated experimentally and numerically in this paper. Compared to conventional LEDs with uniform quantum wells(QWs), LEDs with chirped MQW structures have better internal quantum efficiency(IQE) and carrier injection efficiency. The droop ratios of LEDs with chirped MQW structures show a remarkable improvement at 600 m A/mm2,reduced down from 28.6%(conventional uniform LEDs) to 23.7%(chirped MQWs-a) and 18.6%(chirped MQWs-b),respectively. Meanwhile, the peak IQE increases from 76.9%(uniform LEDs) to 83.7%(chirped MQWs-a) and 88.6%(chirped MQWs-b). The reservoir effect of chirped MQW structures is the significant reason as it could increase hole injection efficiency and radiative recombination. The leakage current and Auger recombination of chirped MQW structures can also be suppressed. Furthermore, the chirped MQWs-b structure with lower potential barriers can enhance the reservoir effect and obtain further improvement of the carrier injection efficiency and radiative recombination, as well as further suppressing efficiency droop.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号